Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Phishing is a ubiquitous and increasingly sophisticated online threat. To evade mitigations, phishers try to ""cloak"" malicious content from defenders to delay their appearance on blacklists, while still presenting the phishing payload to victims. This cat-and-mouse game is variable and fast-moving, with many distinct cloaking methods---we construct a dataset identifying 2,933 real-world phishing kits that implement cloaking mechanisms. These kits use information from the host, browser, and HTTP request to classify traffic as either anti-phishing entity or potential victim and change their behavior accordingly. In this work we present SPARTACUS, a technique that subverts the phishing status quo by disguising user traffic as anti-phishing entities. These intentional false positives trigger cloaking behavior in phishing kits, thus hiding the malicious payload and protecting the user without disrupting benign sites. To evaluate the effectiveness of this approach, we deployed SPARTACUS as a browser extension from November 2020 to July 2021. During that time, SPARTACUS browsers visited 160,728 reported phishing URLs in the wild. Of these, SPARTACUS protected against 132,274 sites (82.3%). The phishing kits which showed malicious content to SPARTACUS typically did so due to ineffective cloaking---the majority (98.4%) of the remainder were detected by conventional anti-phishing systems such as Google Safe Browsing or VirusTotal, and would be blacklisted regardless. We further evaluate SPARTACUS against benign websites sampled from the Alexa Top One Million List for impacts on latency, accessibility, layout, and CPU overhead, finding minimal performance penalties and no loss in functionality.more » « less
-
Data- and model-driven computer simulations are increasingly critical in many application domains. Yet, several critical data challenges remain in obtaining and leveraging simulations in decision making. Simulations may track 100s of parameters, spanning multiple layers and spatial-temporal frames, affected by complex inter-dependent dynamic processes. Moreover, due to the large numbers of unknowns, decision makers usually need to generate ensembles of stochastic realizations, requiring 10s-1000s of individual simulation instances. The situation on the ground evolves unpredictably, requiring continuously adaptive simulation ensembles. We introduce the DataStorm framework for simulation ensemble management, and demonstrate its DataStorm-FE data- and decision-flow and coordination engine for creating and maintaining coupled, multi-model simulation ensembles. DataStorm-FE enables end-to-end ensemble planning and optimization, including parameter-space sampling, output aggregation and alignment, and state and provenance data management, to improve the overall simulation process. It also aims to work efficiently, producing results while working within a limited simulation budget, and incorporates a multivariate, spatiotemporal data browser to empower decision-making based on these improved results.more » « less
An official website of the United States government
